
Reprinted with permission from John Wiley and Sons, Inc.: Complexity , Vol. 1, no. 1, © 1995.

WHAT IS COMPLEXITY?

Murray Gel l -Mann

What is complexity?  A great many quantities have been proposed as
measures of something like complexity.  In fact, a variety of different
measures would be required to capture all our intuitive ideas about
what is meant by complexity and by its opposite, simplicity.

Some of the quantities, like computational complexity, are time (or
space) measures.  They are concerned with how long it would take
(or how much capacity would be needed), at a minimum, for a
standard universal computer to perform a particular task.
Computational complexity itself is related to the least time (or
number of steps) needed to carry out a certain computation.

Other suggested quantities are information measures, referring,
roughly speaking, to the length of the shortest message conveying
certain information.  For example, the algorithmic information
content (or AIC) of a string of bits is defined as the length of the
shortest program that will cause a standard universal computer to
print out the string of bits and then halt.

As measures of something like complexity for an entity in the real
world, all such quantities are to some extent context-dependent or
even subjective.  They depend on the coarse graining (level of detail)
of the description of the entity, on the previous knowledge and
understanding of the world that is assumed, on the language
employed, on the coding method used for conversion from that
language into a string of bits, and on the particular ideal computer



chosen as a standard.  However, if one is considering a sequence of
similar entities of increasing size and complexity, and one is
interested only in how the measure behaves as the size becomes
large, then of course many of the arbitrary features become
comparatively negligible.   Thus students of computational
complexity are typically concerned with whether a sequence of
larger and larger problems can be solved in a time that grows as a
polynomial in the size of the problem (rather than an exponential or
something worse).  It is probably safe to say that any measure of
complexity is most useful for comparisons between things at least
one of which has high complexity by that measure.

Many of the candidate quantities are uncomputable.  For example,
the algorithmic information content of a long bit string can readily be
shown to be less than or equal to some value.  But for any such value
there is no way of excluding the possibility that the AIC could be
lower, reduced by some as yet undiscovered theorem revealing a
hidden regularity in the string.  A bit string that is incompressible
has no such regularities and is defined as "random."  A random bit
string has maximal AIC for its length, since the shortest program that
will cause the standard computer to print it out and then halt is just
the one that says PRINT followed by the string.

This property of AIC, which leads to its being called, on occasion,
"algorithmic randomness," reveals the unsuitability of the quantity as
a measure of complexity, since the works of Shakespeare have a
lower AIC than random gibberish of the same length that would
typically be typed by the proverbial roomful of monkeys.

A measure that corresponds much better to what is usually meant by
complexity in ordinary conversation, as well as in scientific discourse,
refers not to the length of the most concise description of an entity
(which is roughly what AIC is), but to the length of a concise
description of a set of the entityÕs regularities.  Thus something
almost entirely random, with practically no regularities, would have
effective complexity near zero.   So would something completely



regular, such as a bit string consisting entirely of zeroes.  Effective
complexity can be high only a region intermediate between total
order and complete disorder.

There can exist no procedure for finding the set of all regularities of
an entity.  But classes of regularities can be identified.  Finding
regularities typically refers to taking the available data about the
entity, processing it in some manner into, say, a bit string, and then
dividing that string into parts in a particular way and looking for
mutual AIC among the parts.  If a string is divided into two parts, for
example, the mutual AIC can be taken to be the sum of the AICÕs of
the parts minus the AIC of the whole.  An amount of mutual
algorithmic information content above a certain threshold can be
considered diagnostic of a regularity.  Given the identified
regularities, the corresponding effective complexity is the AIC of a
description of those regularities.

More precisely, any particular regularities may be regarded as
embedding the entity in question in a set of entities sharing the
regularities and differing only in other respects.  In general, the
regularities associate a probability with each entity in the set.  (The
probabilities are in many cases all equal but they may differ from
one member of the set to another.)  The effective complexity of the
regularities can then be defined as the AIC of the description of the
set of entities and their probabilities.  (Specifying a given entity, such
as the original one, requires additional information.)

Some authors have tried to characterize complexity by using the
amount  of mutual algorithmic information rather than the length of a
concise description of the corresponding regularities.  Such a choice
of measure does not agree very well, however, with what is usually
meant by complexity.  Take, as a simple example, any string of bits
consisting entirely of pairs 00 and 11.   Such a string possesses an
obvious regularity, but one that can be very briefly described: the
sequences of odd-numbered and even-numbered bits are identical.
The quantity of mutual AIC between those sequences is enormous,



however, for a long string.  Evidently the complexity here is better
represented by the length of the brief description than by the
amount of mutual algorithmic information.

Since it is impossible to find all regularities of an entity, the question
arises as to who or what determines the class of regularities to be
identified.  One answer is to point to a most important set of systems,
each of which functions precisely by identifying certain regularities
in the data stream reaching it and compressing those regularities into
a concise package of information.  The data stream includes
information about the system itself, its environment, and the
interaction between the environment and the behavior of the
system.  The package of information or "schema" is subject to
variation, in such a way that there is competition among different
schemata.  Each schema can be used, along with some of the data, to
describe the system and its environment, to predict the future, and
to prescribe behavior for the system.  But the description and
prediction can be checked against further data, with the comparison
feeding back to influence the competition among schemata.  Likewise
behavior conforming to a prescription has real world consequences,
which can also affect the competition.  In this way the schemata
evolve, with a general tendency to favor better description and
prediction as well as behavior conforming more or less to the
selection pressures in the real world.

Examples on Earth of the operation of complex adaptive systems
include biological evolution, learning and thinking in animals
(including people), the functioning of the immune system in
mammals and other vertebrates, the operation of the human
scientific enterprise, and the behavior of computers that are built or
programmed to evolve strategiesÑfor example by means of neural
nets or genetic algorithms.  Clearly, complex adaptive systems have a
tendency to give rise to other complex adaptive systems.

It is worth remarking for readers of this journal that John Holland,
for example, uses a different set of terms to describe some of the



same ideas.  He uses "adaptive agent" for a complex adaptive system
as defined above, reserving the name "complex adaptive system" for
a composite complex adaptive system (such as an economy or an
ecological system) consisting of many adaptive agents making
predictions of one another's behavior.  What I call a schema he calls
an internal model.  Both of us are conforming to the old saying that a
scientist would rather use someone else's toothbrush than another
scientist's nomenclature.

Any complex adaptive system can, of course, make mistakes in
spotting regularities.  We human beings, who are prone to
superstition and often engage in denial of the obvious, are all too
familiar with such errors.

Besides the possibility of error, we should also consider difficulty of
computation.  How much time is involved in deducing practical
predictions from a highly compressed schema, say a scientific theory,
together with some specific additional data such as boundary
conditions?  Here we encounter time measures of "complexity," for
instance logical depth, which for a bit string is related to the time
required for a standard universal computer to compute the string,
print it out, and then halt.  That time is averaged over the various
programs that will accomplish the task, with an averaging procedure
that weights shorter programs more heavily.  We can then consider
the logical depth of any entity if a suitably coarse-grained
description of it is encoded into a bit string.

A kind of inverse concept to logical depth is crypticity, which
measures the time needed for a computer to reverse the process and
go from a bit string to one of the shorter programs that will generate
it.  In the human scientific enterprise, we can identify crypticity
roughly with the difficulty of constructing a good theory from a set
of data, while logical depth is a crude measure of the difficulty of
making predictions from the theory.



It is often hard to tell whether something that is apparently complex
really possesses a great deal of effective complexity or reflects
instead underlying simplicity combined with a certain amount of
logical depth.  Faced with a fairly detailed diagram of Mandelbrot's
famous fractal set, for example, we might attribute to it a high
effective complexity until we learn that it can be generated from a
very simple formula.  It has logical depth (and not even a gigantic
amount of that) rather than effective complexity.  In contemplating
natural phenomena, we frequently have to distinguish between
effective complexity and logical depth.  For example, the apparently
complicated pattern of energy levels of atomic nuclei might easily be
misattributed to some complex law at the fundamental level, but it is
now believed to follow from a simple underlying theory of quarks,
gluons, and photons, although lengthy calculations would be required
to deduce the detailed pattern from the basic equations.  Thus the
pattern has a good deal of logical depth and very little effective
complexity.

It now seems likely that the fundamental law governing the
behavior of all matter in the universe -- the unified quantum field
theory of all the elementary particles and their interactions -- is
quite simple.  (In fact, we already have a plausible candidate in the
form of superstring theory.)  It also appears that the boundary
condition specifying the initial condition of the universe around the
beginning of its expansion may be simple as well.  If both of these
propositions are true, does that mean that there is hardly any
effective complexity in the universe? Not at all, because of the
relentless operation of chance.

Given the basic law and the initial condition, the history of the
universe is by no means determined, because the law is quantum-
mechanical, thus yielding only probabilities for alternative histories.
Moreover, histories can be assigned probabilities only if they are
sufficiently coarse-grained to display decoherence (the absence of
interference terms between them).   Thus quantum mechanics
introduces a great deal of indeterminacy, going far beyond the rather



trivial indeterminacy associated with Heisenberg's uncertainty
principle.

Of course in many cases the quantum-mechanical probabilities are
very close to certainties, so that deterministic classical physics is a
good approximation.  But even in the classical limit and even when
the laws and initial condition are exactly specified, indeterminacy
can still be introduced by any ignorance of previous history.
Moreover, the effects of such ignorance can be magnified by the
phenomenon of chaos in nonlinear dynamics, whereby future
outcomes are arbitrarily sensitive to tiny changes in present
conditions.

We can think of the alternative possible coarse-grained histories of
the universe as forming a branching tree, with probabilities at each
branching.  Note these are a priori probabilities rather than statistical
ones, unless we engage in the exercise of treating the universe as one
of a huge set of alternative universes, forming a "multiverse."  Of
course, even within a single universe cases arise of reproducible
events (such as physics experiments), and for those events the a

priori  probabilities of the quantum mechanics of the universe yield
conventional statistical probabilities.

Any entity in the world around us, such as an individual human
being, owes its existence not only to the simple fundamental law of
physics and the boundary condition on the early universe but also to
the outcomes of an inconceivably long sequence of probabilistic
events, each of which could have turned out differently.

Now a great many of those accidents, for instance most cases of the
bouncing of a particular molecule in a gas to the right rather than the
left in a molecular collision, have few ramifications for the future
coarse-grained histories.  Sometimes, however, an accident can have
widespread consequences for the future, although those are typically
restricted to particular regions of space and time.  Such a "frozen
accident" produces a great deal of mutual algorithmic information



among various parts or aspects of a future coarse-grained history of
the universe, for many such histories and for various ways of
dividing them up.

But such a situation, in which there is a great deal of mutual
algorithmic information generated, corresponds precisely to what we
have called a regularity.  Thus, as time goes by in the history of the
universe and accidents (with probabilities for various outcomes)
accumulate, so do frozen accidents, giving rise to regularities.  Most
of the effective complexity of the universe lies in the AIC of a
description of those frozen accidents and their consequences, while
only a small part comes from the simple fundamental laws of the
universe, (the law of the elementary particles and the condition at
the beginning of the expansion).  For a given entity in the universe, it
is of course only the frozen accidents leading up to its own
regularities that contribute, along with the basic laws, to its effective
complexity.

As the universe grows older and frozen accidents pile up, the
opportunities for effective complexity to increase keep accumulating
as well.  Thus there is a tendency for the envelope of complexity to
expand even though any given entity may either increase or
decrease its complexity during a given time period.

The appearance of more and more complex forms is not a
phenomenon restricted to the evolution of complex adaptive systems,
although for those systems the possibility arises of a selective
advantage being associated under certain circumstances with
increased complexity.

The second law of thermodynamics, which requires average entropy
(or disorder) to increase, does not in any way forbid local order from
arising through various mechanisms of self-organization, which can
turn accidents into frozen ones producing extensive regularities.
Again, such mechanisms are not restricted to complex adaptive
systems.



Different entities may have different potentialities for developing
higher complexity.  Something that is not particularly distinguished
from similar things by its effective complexity can nevertheless be
remarkable for the complexity it may achieve in the future.
Therefore it is important to define a new quantity, "potential
complexity," as a function of future time, relative to a fixed time, say
the present.  The new quantity is the effective complexity of the
entity at each future time, averaged over the various coarse-grained
histories of the universe between the present and that time,
weighted according to their probabilities.

The era may not last forever in which more and more complex forms
appear as time goes on.  If, in the very distant future, virtually all
nuclei in the universe decay into electrons and positrons, neutrinos
and antineutrinos, and photons, then the era characterized by fairly
well-defined individual objects may draw to an end, while self-
organization becomes rare and the envelope of complexity begins to
shrink.

These remarks summarize some of the material in my book, The
Quark and the Jaguar, which is intended for the lay reader interested

in science.  A more precise and mathematical version will be

presented elsewhere, with proper references to earlier work.
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